

MTT-S Panel Sessions

PSA: Millimeter-Wave Monolithic Integrated Circuits

Date: June 2, 1992
Time: 11:30 a.m.–1:00 p.m.
Location: San Miguel Room—Convention Center
Sponsor: MTT-6 Microwave and Millimeter Wave Integrated Circuits
Organizer: Dr. Gailon E. Brehm, Texas Instruments
Panelists:
Mike Kim, TRW
Manfred Schindler, Raytheon Research
Hua Quen Tserng, Texas Instruments
Dr. Sander Weinreb, Martin Marietta

Abstract:

Recent advances in transistors, particularly 0.1 micrometer-gate HEMTs, have enabled the achievement of excellent gain, noise figure, power, and efficiency at frequencies as high as 100 GHz. A correspondingly intense activity has emerged to fabricate MMICs capitalizing on that technology. Recent circuits have emphasized advances in the millimeter-wave circuit state of the art in three dimensions—circuits with operating frequencies well above 50 GHz, output power and efficiency advances at frequencies above 30 GHz, and highly-dense multifunction circuits above 30 GHz. Panelists will provide not only data on the latest circuits but insight into the technological breakthroughs that have made performance at millimeter waves possible.

PSB: Critical Issues in Experimental Validation

Date: June 2, 1992
Time: 11:30 a.m.–1:00 p.m.
Location: Ruidoso Room—Convention Center
Sponsor: MTT-1 Microwave Computer-Aided Design
Organizer: James C. Rautio
Panelists:
Inder Bahl (ITT)
Mare Goldfarb, Raytheon
Robert Schaeffer, HP
Ray Shimodo, Boeing
James Rautio, Sonnet

Abstract:

While microwave and electromagnetic software have seen tremendous growth in the last decade, experimental techniques have failed to keep pace. At the present state of the art in experimental validation, error analyses are rarely, if ever performed. In addition, validations rarely carry credibility across more than the group that performs the validation, forcing each group that needs validation of a particular analysis to repeat the validation. This panel session will initiate discussion with regard to these issues, which include proper experiment design, error and sensitivity analysis, experimental significance and experimental objective. The ultimate goal of experimental validation is to provide an experimental protocol of such quality that the results of experimental validation using such protocol carries credibility outside the group performing the validation.

Panel Sessions

PSC: MMICs for Commercial Market—Fact or Fantasy?

Date: June 2, 1992
Time: 11:30 noon–1:00 p.m.
Location: Cimarron Room—Convention Center
Sponsors: MTT-6 Microwave & Millimeter Wave Integrated Circuits
Organizers: Ramesh Gupta, COMSAT Labs
Fazal Ali, University of California, Berkeley
Panelists: Doug Mathews, Motorola
Dan Millicker, Hewlett Packard
Richard Porko, M/A Com

Abstract:

Recent market forecasts for 1990s project a rapid increase in GaAs MMIC applications in commercial products and systems. These projections are driven by MMIC applications in a wider variety of commercial systems and improvements in manufacturing processes and packaging, resulting in lower costs. However, GaAs and silicon MMICs are competing technologies, which also complement each other, for commercial MMIC components and products. In this panel session, invited speakers from the industry and user community for commercial MMIC products will address the competitive issues for GaAs MMICs versus the silicon alternative, explore the difficulties in making the transition to commercial products, and present the lessons learned from the experiences in making commercial products successful. Key MMIC design, manufacturing, and business issues for commercial products and examples of some of these products will be discussed.

Panel Sessions

PSD: Process Technology and Testing Challenges for High Volume Commercial MMICS

Date: June 3, 1992
Time: 11:30 a.m.–1:00 p.m.
Location: San Miguel Room—Convention Center
Sponsor: MTT-6 Microwave and Millimeter-Wave Integrated Circuits
Organizers: George Norris, Motorola
Mike Golio, Motorola
Fazal Ali, University of California, Berkeley
Panelists: To Be Announced

Abstract:

Emerging commercial RF applications stress the need for low unit cost and high volumes (millions of chips) in the MMIC foundry. Many accepted process areas (such as via holes, wafer thinning, gate recess, active layer technology, and crossovers) must be critically reexamined in the light of electrical performance gains versus cost and throughout, this panel will address some of the following questions:

Process:

Microstrip or coplanar elements? Thinned wafers (4–5 mil) with via holes or thicker unviaed wafers (10 mils and up)?
Are ion implanted MESFETs the best (or only) choice for commercial MMICs?
Will 100 or 150 mm wafer diameters affect this?
Can recessed gate FET technology meet system needs for low DC power?
Is non-recessed gate technology manufacturable?
What are the critical active and passive device parameters in a typical commercial application (e.g., communication)? Is this different from DoD?
Is integration of RF and digital in one process important?

Testing:

Do we need to RF/DC test commercial ICs on wafer? Can we afford it?
What is the impact on required process yield if not?
Is 100% package testing required?

General:

Time to market is critical for commercial applications . . . how does this affect the commercial foundry?

Panel Sessions

PSE: IVHS in America

Date: June 3, 1992
Time: 11:30 a.m.–1:00 p.m.
Location: Ruidoso Room—Convention Center
Sponsor: MTT-S
Organizers: James Constantino, IVHS AMERICA
Panelists: Norman Van Ness, Director, Traffic Management and IVHS
Richard Mandelbaum, Supervisor, IVHS Architecture Planning, AT&T
Donald E. Orne, PATH Director, Univ. of Calif., Institute of Transportation Studies
Robert L. French, Principal, R. L. French & Associates
William M. Spreitzer, Technical Director, IVHS Program Office, General Motors Corporation

Abstract:

The use of advanced technology to improve surface transportation is crucial to U.S. efforts to relieve congestion, prevent accidents, conserve fuel, and enhance the environment. Intelligent Vehicle Highway Systems (IVHS) are considered by many to offer a major potential for improving traffic operations and safety. IVHS applies the technologies of communications, control, electronics, and computer hardware and software to both vehicles and infrastructure to improve the safe, expeditious, and economic movement of people and goods. IVHS is becoming the principle element of many surface transportation plans.

The IVHS program will be carried out using a unique public-private partnership of government, universities, and the private sector called the Intelligent Vehicle Highway Society of America, or quite simply IVHS AMERICA. IVHS AMERICA's mission is to coordinate and foster the public-private partnership to make the U.S. surface transportation system significantly safer and more effective by accelerating the identification, development, and deployment of advanced technologies. IVHS AMERICA also has a central role in developing strategic plans and fostering international cooperation in this area.

PSF: Technology Transfer

Date: June 4, 1992
Time: 11:30 a.m.–1:00 p.m.
Location: To Be Announced
Sponsor: IMP 1992 Steering Committee
Organizers: Robert L. Hutchins, BDM
Shyam H. Gurbaxani, UNM and USAF Phillips Laboratory

Abstract:

Recent international business and political developments have produced fundamental changes in the role of national laboratories. The State of New Mexico with its DOE and DOD laboratories—LANL, SNL, USAF Phillips Lab, WSMR, and others—has played a key role in the legislation and implementation of Technology Transfer. A distinguished panel of scientists and administrators along with some invited papers will present the status of this newly evolving subject.